355 research outputs found

    Arms races and car races

    Get PDF
    Evolutionary car racing (ECR) is extended to the case of two cars racing on the same track. A sensor representation is devised, and various methods of evolving car controllers for competitive racing are explored. ECR can be combined with co-evolution in a wide variety of ways, and one aspect which is explored here is the relative-absolute fitness continuum. Systematical behavioural differences are found along this continuum; further, a tendency to specialization and the reactive nature of the controller architecture are found to limit evolutionary progress

    Evolving controllers for simulated car racing

    Get PDF
    This paper describes the evolution of controllers for racing a simulated radio-controlled car around a track, modelled on a real physical track. Five different controller architectures were compared, based on neural networks, force fields and action sequences. The controllers use either egocentric (first person), Newtonian (third person) or no information about the state of the car (open-loop controller). The only controller that is able to evolve good racing behaviour is based on a neural network acting on egocentric inputs

    Forcing neurocontrollers to exploit sensory symmetry through hard-wired modularity in the game of Cellz

    Get PDF
    Several attempts have been made in the past to construct encoding schemes that allow modularity to emerge in evolving systems, but success is limited. We believe that in order to create successful and scalable encodings for emerging modularity, we first need to explore the benefits of different types of modularity by hard-wiring these into evolvable systems. In this paper we explore different ways of exploiting sensory symmetry inherent in the agent in the simple game Cellz by evolving symmetrically identical modules. It is concluded that significant increases in both speed of evolution and final fitness can be achieved relative to monolithic controllers. Furthermore, we show that a simple function approximation task that exhibits sensory symmetry can be used as a quick approximate measure of the utility of an encoding scheme for the more complex game-playing task

    Evolving robust and specialized car racing skills

    Get PDF
    Neural network-based controllers are evolved for racing simulated R/C cars around several tracks of varying difficulty. The transferability of driving skills acquired when evolving for a single track is evaluated, and different ways of evolving controllers able to perform well on many different tracks are investigated. It is further shown that such generally proficient controllers can reliably be developed into specialized controllers for individual tracks. Evolution of sensor parameters together with network weights is shown to lead to higher final fitness, but only if turned on after a general controller is developed, otherwise it hinders evolution. It is argued that simulated car racing is a scalable and relevant testbed for evolutionary robotics research, and that the results of this research can be useful for commercial computer games
    corecore